The curve C has equation 2yx^2 + 2x + 4y - cos(πy) = 45. Using implicit differentiation, find dy/dx in terms of x and y

2x2y + 2x + 4y - cos(πy) = 45Applying implicit differentiation:4xy + 2x2(dy/dx) + 2 + 4(dy/dx) + πsin(πy)(dy/dx) = 0Moving all (dy/dx) terms to one side:2x2 (dy/dx) + 4(dy/dx) + πsin(πy)(dy/dx) = -4xy - 2Factorising:dy/dx [ 2x2 + 4 +πsin(πy) ] = -(4xy + 2)Making (dy/dx) the subject of the equation:dy/dx = -(4xy + 2) / 2x2 + 4 +πsin(πy)

PM
Answered by Prahlad M. Maths tutor

6021 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find exact solution to 2ln(2x+1) - 10 =0


A and B have coordinates (2,3) and (5,15), respectively. Together they form line l. Find the equation for the line r that goes through C(7,-2) and is perpendicular to l. Give the answer in the format of y=mx+b


What's the proof for the quadratic formula?


How do I integrate and differentiate 1/(x^2)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning