Consider the closed curve between 0 <= theta < 2pi given by r(theta) = 6 + alpha sin theta, where alpha is some real constant strictly between 0 and 6. The area in this closed curve is 97pi/2. Calculate the value of alpha.

Student uses the definition of area [A = 1/2 integral r(theta)^2 d theta], and proceeds using standard integration techniques to give a quadratic solvable for alpha. [alpha^2 = 25] Thus, alpha = 5.

Answered by Graham C. Maths tutor

2993 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the volume of revolution generated by the function, f(x) = (3^x)√x, for the domain x = [0, 1]


f(x) = (4x + 1)/(x - 2). Find f'(x)


Determine the tangent to the curve y = sin^2(x)/x at the point, x = pi/2. Leave your answer in the form ax+by+c=0


What is the derivative with respect to x of the function f(x)=1+x^3+ln(x), x>0 ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences