A curve f(x,y) is defined by sin(3y)+3ye^(-2x)+2x^2 = 5. Find dy/dx

In questions where we have a function of x and y equal to a constant, we need to find dy/dx indirectly.We use the formula (df/dx) + (df/dy)(dy/dx) = 0So all we do is differentiate each term in the function with respect to x (assuming y is a constant) to give us our df/dx term, which is 0-6ye-2x+4x.Then we differentiate each term with respect to y (now assuming x is a constant) to give us our df/dy term, which is 3cos(3y)+3e2x+0.Plugging these terms directly into our formula and re-arranging for dy/dx we get:dy/dx = (6ye-2x-4x)/(3cos(3y)+3e-2x)

LW
Answered by Lewie W. Maths tutor

3743 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = sin(2x)(4x+1)^3, find dy/dx


Prove that, if 1 + 3x^2 + x^3 < (1+x)^3, then x>0


Let f(x) = x^3 -2x^2-29x-42. a)Show (x+2) is a factor b)Factorise f(x) completely


Find dy/dx in terms of t of the parametric equations x=4e^-2t, y=4 - 2e^2t


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning