A curve f(x,y) is defined by sin(3y)+3ye^(-2x)+2x^2 = 5. Find dy/dx

In questions where we have a function of x and y equal to a constant, we need to find dy/dx indirectly.We use the formula (df/dx) + (df/dy)(dy/dx) = 0So all we do is differentiate each term in the function with respect to x (assuming y is a constant) to give us our df/dx term, which is 0-6ye-2x+4x.Then we differentiate each term with respect to y (now assuming x is a constant) to give us our df/dy term, which is 3cos(3y)+3e2x+0.Plugging these terms directly into our formula and re-arranging for dy/dx we get:dy/dx = (6ye-2x-4x)/(3cos(3y)+3e-2x)

LW
Answered by Lewie W. Maths tutor

3747 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of [ 2x^4 - (4/sqrt(x) ) + 3 ], giving each term in its simplest form


If x = cot(y) what is dy/dx?


A curve C has equation 2^x + y^2 = 2xy. How do I find dy/dx for the curve C?


How do you integrate sin^2(3x)cos^3(3x) dx?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning