A curve f(x,y) is defined by sin(3y)+3ye^(-2x)+2x^2 = 5. Find dy/dx

In questions where we have a function of x and y equal to a constant, we need to find dy/dx indirectly.We use the formula (df/dx) + (df/dy)(dy/dx) = 0So all we do is differentiate each term in the function with respect to x (assuming y is a constant) to give us our df/dx term, which is 0-6ye-2x+4x.Then we differentiate each term with respect to y (now assuming x is a constant) to give us our df/dy term, which is 3cos(3y)+3e2x+0.Plugging these terms directly into our formula and re-arranging for dy/dx we get:dy/dx = (6ye-2x-4x)/(3cos(3y)+3e-2x)

LW
Answered by Lewie W. Maths tutor

3300 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx for f(x)=3x^2 +5x


How do you solve a quadratic inequality eg find the values of x for which x^2 -6x +2 < -3


express (1+4(root7)) / (5+2(root7)) as a+b(root7), where a and b are integers


What is the definite integral of 2x^2 + 4x + 1 with a lower limit of 3 and a higher limit of 6?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences