A curve has an equation: (2x^2)*y +2x + 4y – cos(pi*y) = 17. Find dy/dx

You must differentiate each individual term in the equation.Firstly start with the term of the product of 2x2 * y, using the product rule (dy/dx = udv/dx + vdu/dx)Let u = 2x2 and v = yDu/dx = 4x and dv/dx = dy/dxDifferential of: 2x2y = 2x2 dy/dx + 4xy                         2x = 2                        4y = 4 dy/dx                        -cos(piy) = pi * dy/dx sin(piy)                        17 = 0So overall differential of whole equation:              2x2 dy/dx + 4xy + 2 + 4 dy/dx + pidy/dx sin(piy) = 0Rearrange the equation to get any term that contains a dy/dx on one side:              2x2 dy/dx + 4 dy/dx + pidy/dx sin(piy) = - 4xy – 2Take out a factor of dy/dx on the left hand side:Dy/dx(2x2 + 4 + pisin(piy)) = - 4xy -2Divide by the other term on the left hand side to get dy/dx by itself:Dy/dx = (-4xy – 2)/( 2x2 + 4 + pisin(piy))

MB
Answered by Matthew B. Maths tutor

3219 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The tangent to a point P (p, pi/2) on the curve x=(4y-sin2y)^2 hits the y axis at point A, find the coordinates of this point.


Given that y = 8x + 2x^-1, find the 2 values for x for which dy/dx = 0


The curve C has equation y = 2x^2 - 12x + 16 Find the gradient of the curve at the point P (5, 6).


Using integration by parts, and given f(x) = 3xcos(x), find integrate(f(x) dx) between (pi/2) and 0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences