Find the indefinite integral of x^8*ln(3x) using integration by parts

For this method we need to choose our u and dv/dx. Using the Late method (Logarithm, algebra, trigonometric, exponential), we can pick our u value which will be ln(3x). du/dx is therefore 1/x, using the chain rule. dv/dx = x^8, therefore v = (x^9)/9. Using the integration by parts formula, which is u*v - int[(du/dx)v] which equals (x^9/81)(9ln(3x)-1) + C, where C is a constant of integration

Answered by Joel B. Maths tutor

5048 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If the quadratic equation kx^2+kx+1=0 has no real roots, what values of k are possible?


The triangle ABC is such that AC=8cm, CB=12cm, angle ACB=x radians. The area of triangle ABC = 20cm^2. Show that x=0.430 (3sf)


What is a radian?


How would I go about finding the coordinates minimum point on the curve eg y = e^(x) - 9x -5?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences