Find the indefinite integral of x^8*ln(3x) using integration by parts

For this method we need to choose our u and dv/dx. Using the Late method (Logarithm, algebra, trigonometric, exponential), we can pick our u value which will be ln(3x). du/dx is therefore 1/x, using the chain rule. dv/dx = x^8, therefore v = (x^9)/9. Using the integration by parts formula, which is u*v - int[(du/dx)v] which equals (x^9/81)(9ln(3x)-1) + C, where C is a constant of integration

Answered by Joel B. Maths tutor

5103 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the general solution of the differential equation: d^2x/dt^2 + 5dx/dt + 6x = 2cos(t) - sin(t)


How do you find the angle between two lines in three dimensional vector space given two points on line 1 and the vector equation of line 2


How do I differentiate the trigonometric functions sin(x) and cos(x) ?


Using implicit differentiation, write the expression "3y^2 = 4x^3 + x" in terms of "dy/dx"


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences