PQR is a triangle with vertices P (−2, 4), Q(4, 0) and R (3, 6). Find the equation of the median through R.

(1) Find the Midpoint of PQ which is (1,2) (Halfway between the x and y coordinates)(2) dy/dx for M(1,2) -> R(3,6) = (6-2)/(3-1) = 4/2 = 2(3) y =mx + c so y = 2x + c when R(3,6) is input 6 = 2(3) + c, c = 0 so y=2x

SH
Answered by Scott H. Maths tutor

4061 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

A triangle has vertices A(-3,5), B(7,9) and C(2,11). What is the equation of the median that passes through the vertex C?


Given that, dy/dx = 6x^2 - 3x + 4, and y = 14 when x = 2, express y in terms of x.


dy/dx = 6x^2 - 3x + 4 when y=14 x=2 Find y in terms of x


Find the gradient of the straight line with equation 4x+3y=12


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences