PQR is a triangle with vertices P (−2, 4), Q(4, 0) and R (3, 6). Find the equation of the median through R.

(1) Find the Midpoint of PQ which is (1,2) (Halfway between the x and y coordinates)(2) dy/dx for M(1,2) -> R(3,6) = (6-2)/(3-1) = 4/2 = 2(3) y =mx + c so y = 2x + c when R(3,6) is input 6 = 2(3) + c, c = 0 so y=2x

SH
Answered by Scott H. Maths tutor

4039 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Given that, dy/dx = 6x^2 - 3x + 4, and y = 14 when x = 2, express y in terms of x.


A circle has equation x^2+y^2-8x+10y+41=0. A point on the circle has coordinates (8,-3). Find the equation of the tangent to the circle passing through this point.


what is 87% of 654


Point K(8,-5) lies on the circle x^2 +y^2 - 12x - 6y - 23. find the equation of the tangent at K.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences