PQR is a triangle with vertices P (−2, 4), Q(4, 0) and R (3, 6). Find the equation of the median through R.

(1) Find the Midpoint of PQ which is (1,2) (Halfway between the x and y coordinates)(2) dy/dx for M(1,2) -> R(3,6) = (6-2)/(3-1) = 4/2 = 2(3) y =mx + c so y = 2x + c when R(3,6) is input 6 = 2(3) + c, c = 0 so y=2x

SH
Answered by Scott H. Maths tutor

4481 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Given x^3 + 4x^2 + x - 6 = 0 , and one of the factors of this equation is (x-1), factorise and hence compute the other solutions for the eqaution.


log_a(36) - log_a(4) = 0.5, what is a?


Find ∫((x^2−2)(x^2+2)/x^2) dx, x≠0


Given f(x) = (x^(2)+(3*x)+1)/(x^(2)+(5*x)+8), find f'(x) and simplify your answer.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning