PQR is a triangle with vertices P (−2, 4), Q(4, 0) and R (3, 6). Find the equation of the median through R.
(1) Find the Midpoint of PQ which is (1,2) (Halfway between the x and y coordinates)(2) dy/dx for M(1,2) -> R(3,6) = (6-2)/(3-1) = 4/2 = 2(3) y =mx + c so y = 2x + c when R(3,6) is input 6 = 2(3) + c, c = 0 so y=2x