Answers>Maths>IB>Article

Find integer solutions for m - n(log3(2)) = 10(log9(6)).

From the properties of logarithms (logba = logca / logcb), 10log96 can be rewritten as 10(log36 / log39). Since log39 = 2, 10log96 = 5log36. We then bring both log terms to the same side of the equation: m = 5log36 + nlog32. Again, from log properties (a(logcb) = logcba), this can be rewritten as m = log365 + log32n. Since the logarithms have the same base, we can combine them using another log property (logab + logac = logabc). This yields m = log3652n. We can factor out the 25 from the 65 to obtain m = log335252n. Combining the 2s: m = log33525 + n. We then raise 3 to the power of both sides to get an equation without logarithms: 3m = 3525 + n. We can write an invisible 20 term on the left side without changing the equation, giving 3m20 = 3525 + n. Since m and n are integers, m = 5 and 5 + n = 0, meaning n = -5. So the solution is m = 5, n = -5.

TK
Answered by Tristan K. Maths tutor

11048 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

How do you perform implicit differentiation?


How does proof by induction work?


In an arithmetic sequence, the first term is 2, and the fourth term is 14. a) Find the common difference, d. b) Calculate the sum of the first 14 terms, S14.


Show that the following system of equations has an infinite number of solutions. x+y+2z = -2; 3x-y+14z=6; x+2y=-5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning