Using the product rule, differentiate y=(2x)(e^3x)

The product rule states that if y=uv, where u and v are both functions of x, then dy/dx = u(dv/dx) + v(du/dx)Therefore, the differential of 2xe3x can be found by letting 2x=u and e3x =v.u=2x,du/dx = 2
v=e3xdv/dx = 3e3x
dy/dx = u(dv/dx) + v(du/dx)dy/dx = 2x(3e3x) + e3x(2)dy/dx = 6xe3x + 2e3xdy/dx = 2e3x(3x+1)

Answered by Christy O. Maths tutor

5486 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve x(5(3^0.5)+4(12^0.5))=(48^0.5) to the simplest form. (4 Marks)


Where does integration by parts come from?


show that f(x)=cos(x) is even and what is its graphical property


Integrate (3x^2+2x^-1) with respect to x in the range of K to 3 and explain why K cannot be 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences