Using the product rule, differentiate y=(2x)(e^3x)

The product rule states that if y=uv, where u and v are both functions of x, then dy/dx = u(dv/dx) + v(du/dx)Therefore, the differential of 2xe3x can be found by letting 2x=u and e3x =v.u=2x,du/dx = 2
v=e3xdv/dx = 3e3x
dy/dx = u(dv/dx) + v(du/dx)dy/dx = 2x(3e3x) + e3x(2)dy/dx = 6xe3x + 2e3xdy/dx = 2e3x(3x+1)

CO
Answered by Christy O. Maths tutor

6393 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the tangent to the curve with the equation y = (3x^4 - 18)/x at the point where x = 3


The equation of a curve is x(y^2)=x^2 +1 . Using the differential, find the coordinates of the stationary point of the curve.


Integrate 2x/[(x+1)(2x-4)


How to solve polynomials


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning