Using the product rule, differentiate y=(2x)(e^3x)

The product rule states that if y=uv, where u and v are both functions of x, then dy/dx = u(dv/dx) + v(du/dx)Therefore, the differential of 2xe3x can be found by letting 2x=u and e3x =v.u=2x,du/dx = 2
v=e3xdv/dx = 3e3x
dy/dx = u(dv/dx) + v(du/dx)dy/dx = 2x(3e3x) + e3x(2)dy/dx = 6xe3x + 2e3xdy/dx = 2e3x(3x+1)

CO
Answered by Christy O. Maths tutor

6792 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

why is the number e important?


Integrate xsin(x) by parts between the limits of -pi/2 and +pi/2


How do you intergrate basic algebra?


Solve the equation sec^2(A) = 3 - tan(A), for 0<= A <= 360 (degrees)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning