Solve the equation 2y^(1/2) -7y^(1/4) +3 = 0

2y1/2 -7y1/4+ 3 = 0 We need to use a substitution to obtain a quadratic.Let y1/4 = x (use the y with the smallest fractional power as your substitution)From this, we can see that y1/2 = x2 (using the laws of indices: (ya)b = yab )We substitute this in and obtain an equation in terms of x. The right hand side will stay the same as this is just equal to 0.The equation becomes:2x2 -7x + 3 = 0 We can now solve this by factorizing, (2x - 1)(x -3) = 0 we now get our solutions:(2x - 1) = 0 rearranging for x we get: x = 1/2(x - 3) = 0 x = 3 Sub our values for x into the original substitution y1/4 = x We can rearrange this substitution for y:(y1/4)4 = (x)4y = x4 Now y = (1/2)4 = 1/16and y = (3)4 = 81 so the solutions of the equation are 1/16 and 81.

SL
Answered by Sarah L. Maths tutor

6355 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I get the eigenvalues, x, of a matrix, M, with eigenvectors, v?


differentiate 4x^3 + 3x^2 -5x +1


I don't fully understand the purpose of integration. Could you please explain it to me?


What is the difference between differentiation and integration, and why do we need Calculus at all?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning