Using methods of substitution solve the following simultaneous equations: y - 2x - 1 = 0 and 4x^2 + y^2 - 25 = 0

(1) 4x2 + y2 - 25 = 0 (2) y - 2x - 1 = 0
Rearranging (2) into an equation of y in terms of x we have:y = 2x +1
now substituting into equation (1) 4x2 + (2x +1)2 - 25 = 0 and now expanding this equation we have,
4x2 + (4x2 + 4x + 1) - 25 = 0 Expanding out the brackets8x2 +4x + 1 - 25 = 0 here we simplify the equation8x2 + 4x - 24 = 0 dividing through by 4 gives us,2x2 + x - 6 = 0
Now we factorise to find out our x values:(2x -3)(x+2)= 0Our x values are therefore x = -2 and x = 3/2
Now we substitute back into equation (2)our y values are then y = 4 and y = -3




Answered by Kerry M. Maths tutor

2829 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the substitution u=4x-1 to find the exact value of 1/4<int<1/2 ((5-2x)(4x-1)^1/3)dx


I don't understand how to visualise differentiation, please could you show my an example to allow me to understand what it actually is better?


The weight in grams, of beans in a tin is normally distributed with mean U and S.D. 7.8, given that 10% conntain more than 225g a) Find U b) % of tins that contain more than 225 grams(A2 stats)


Prove that the equation y = 3x^4 - 8x^3 - 3 has a turning point at x=2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences