For sketching the graph of the modulus of f(x) (in graph transformations), why do we reflect in the x-axis anything that is below it?

Let's remember what applying a modulus to any number actually does. Applying the modulus to a number just gives us back the positive version of that number- if it is positive, we get back itself, and if it is negative, we get back the positive version of it. For example, the modulus of 5 is 5, and the modulus of -5 is 5 again.Let's see how this fits into our discussion of graphs. f(x) is a number after all for any specific fixed x- we plug in an x value and we get a number corresponding to that specific x value given by f(x) (i.e. its y-value). So let's say I take x=1. That will give me back f(1). If f(1) is positive, the point lies above the x-axis, since the y-value at x=1 is positive. Applying the modulus to f(1) will not change it- it will stay as it is, f(1). Hence if it is positive we leave the point as it is. So anything above the x-axis stays as it was before. Now, if f(1) happens to be negative, this means the y-value at x=1 is negative and the point lies below the x-axis. If we apply the modulus, we get the positive version of f(1), which is going to be that same y-value, but now becoming positive and so going above the x-axis. So for all points below the x-axis, we reflect them above the x-axis.Summarising, we have that points above the x-axis remain unchanged, whereas points below the x-axis get reflected in the x-axis upwards. Are we following, or do you need me to explain something again? [I would use a visual argument on the board as well, at the same time as explaining, so it can be clearer to the student.]

Answered by Stefanos R. Maths tutor

3955 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative of f(x) = 2xe^x


1. A small stone is dropped from a height of 25 meters above the ground. i) Find the time taken for the stone to reach the ground ii) Find the speed of the stone as it reaches the ground


How do I intregrate ln(x)?


Write down three linear factors of f(x) such that the curve of f(x) crosses the x axis at x=0.5,3,4. Hence find the equation of the curve in the form y = 2(x^3) + a(x^2) + bx + c.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences