How do I find and plot the roots of a polynomial with complex roots on an Argand diagram? e.g. f(z) =z^3 -3z^2 + z + 5 where one of the roots is known to be 2+i

For a polynomial with real coefficients, use that roots come in complex conjugate pairs. Therefore, another root is 2-i (and we know for this example that the final root must be real). Write the factorised function from what we know so far. For this polynomial, the factorised equation must therefore look like (z-z1)(z-z2)(z-z3) where z1 and z2 are the 2 already known roots, and z3 is real.Expand the known part. Expanding (z-(2+i))(z-(2-i)) gives (z^2 -4z +5) - be careful with the algebra when expanding. Comparing coefficients of (z^2 -4z +5)(z-z3)=z^3 -3z^2 + z + 5 shows that z3 is -1.An Argand diagram plot is simply a plot of imaginary against real components. The roots are (2+i1), (2-i1), and (-1 +i0), so the points to plot will be (2,-1), (2,+1), and (-1, 0).

ES
Answered by Edward S. Further Mathematics tutor

4759 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Using the definitions of hyperbolic functions in terms of exponentials show that sech^2(x) = 1-tanh^2(x)


Prove, by induction, that 4^(n+1) + 5^(2n-1) is always divisible by 21


using an integrating factor, find the general solution of the differential equation dy/dx +y(tanx)=tan^3(x)sec(x)


Given y=arctan(3e^2x). Show dy/dx= 3/(5cosh(2x) + 4sinh(2x))


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences