Solve algebraically the simultaneous equations x^2 + y^2 = 25 and y - x = 1

Let's label the equations x2 + y2 = 25 (1) y - x = 1 (2). We can use substitution to solve this simultaneous equation. Let's make y the subject of the equation (2) and we get y = x + 1. Now, lets find y2 and get y2 = (x + 1)2 = (x + 1)(x + 1) = x2 + 2x + 1. Now we can substitute y2 into equation (1) and get the following:x2 + x2 + 2x + 1 = 25 => 2x2 + 2x -24 = 0 => x2 + x - 12 = 0. Factorising gives us (x + 4)(x - 3) = 0 and the roots are x = -4 and x = 3Now we need to find y by substituting x into y = x + 1 and we get y = -3 and y = 4. Therefore, the solutions are x = -4, y = -3 and x = 3, y = 4.

Answered by Vithya N. Maths tutor

8033 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I solve simultaneous equations graphically? e.g (1) 4x - 3y = 11 (2) 3x + 2y = 4


Expand and simplify (x – 2)(2x + 3)


Solve 2(x+4)=4x-6 for x


In a competition, a prize is won every 2014 seconds. Work out an estimate for the number of prizes won in 24 hours. You must show your working. (4 marks)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences