Solve algebraically the simultaneous equations x^2 + y^2 = 25 and y - x = 1

Let's label the equations x2 + y2 = 25 (1) y - x = 1 (2). We can use substitution to solve this simultaneous equation. Let's make y the subject of the equation (2) and we get y = x + 1. Now, lets find y2 and get y2 = (x + 1)2 = (x + 1)(x + 1) = x2 + 2x + 1. Now we can substitute y2 into equation (1) and get the following:x2 + x2 + 2x + 1 = 25 => 2x2 + 2x -24 = 0 => x2 + x - 12 = 0. Factorising gives us (x + 4)(x - 3) = 0 and the roots are x = -4 and x = 3Now we need to find y by substituting x into y = x + 1 and we get y = -3 and y = 4. Therefore, the solutions are x = -4, y = -3 and x = 3, y = 4.

VN
Answered by Vithya N. Maths tutor

9489 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations y=2x and y=x+3


I buy a car from a dealership for £3500. The car depreciates in value for every year I own it. What is the value of the car after I have owned it for 18 months if it depreciates at a rate of 5 percent?


Circle the number that is closest in value to (1.1)/(0.0204) [From selection of 5, 6, 50, 60] [Edit of 2018 Paper 1 Q4]


The line L1 is given by the Equation y =3x+5, and the line L2 is given by the Equation 4y-12x+16=0. Show that the lines L1 and L2 are Parallel


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning