You are given a polynomial f, where f(x)=x^4 - 14x^3 + 74 x^2 -184x + 208, you are told that f(5+i)=0. Express f as the product of two quadratic polynomials and state all roots of f.

Since x=5+i is a solution to f(x)=0 we then know that x=5-i must also be a solution to f(x)=0, by the complex conjugate root theorem.Now we can break f down into the product of a polynomial and these two known roots;f(x)=(x-(5+i))(x-(5-i))p(x), where p(x) is to be found. Expanding brackets then gives us that;f(x)=(x^2-10x+26)p(x) We can then divide f(x) by (x-10x+26) to find p(x), and hence express f as the product of two quadratic polynomials. f(x)=(x^2-10x+26)(x^2-4x+8)Then by using the quadratic equation we can find the roots of p(x) and so now we have the roots of f as required. x= 5+i, 5-i, 2-2i, 2+2i

PL
Answered by Patrick L. Further Mathematics tutor

2303 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

What is the complex conjugate?


Prove by induction that f(n) = 2^(k + 2) + 3^(3k + 1) is divisible by 7 for all positive n.


Use De Moivre's Theorem to show that if z = cos(q)+isin(q), then (z^n)+(z^-n) = 2cos(nq) and (z^n)-(z^-n)=2isin(nq).


How do I convert cartesian coordinates into polar coordinates?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning