Differentiate w.r.t x the expression arccos(x).

Using implicit differentiation, let y equal arccos(x) : y=arccos(x). So x = cos(y), and dx/dy = -sin(y). dy/dx is therefore -1/sin(y). from trig indentities: sin(y) = sqrt(1-cos^2(y)). Substituting gives dy/dx = -1/sqrt(cos^2(y)) which is the derivative of arccos.

DP
Answered by Daniel P. Further Mathematics tutor

4012 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Write the Maclaurin’s series for f(x)=sin(3x)+e^x up to the third order


Given that p≥ -1 , prove by induction that, for all integers n≥1 , (1+p)^k ≥ 1+k*p.


Show that the matrix A is non-singular for all real values of a


Using de Moivre's theorem demonstrate that "sin6x+sin2x(16(sinx)^4-16(sinx)^2+3)"


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning