Differentiate w.r.t x the expression arccos(x).

Using implicit differentiation, let y equal arccos(x) : y=arccos(x). So x = cos(y), and dx/dy = -sin(y). dy/dx is therefore -1/sin(y). from trig indentities: sin(y) = sqrt(1-cos^2(y)). Substituting gives dy/dx = -1/sqrt(cos^2(y)) which is the derivative of arccos.

DP
Answered by Daniel P. Further Mathematics tutor

2737 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution of: y'' + 4y' + 13y = sin(x)


When using the method of partial fractions how do you choose what type of numerator to use and how do you know how many partial fractions there are?


Are the integers a group under addition? How about multiplication?


Find the stationary points of the function z = 3x(x+y)3 - x3 + 24x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences