Differentiate w.r.t x the expression arccos(x).

Using implicit differentiation, let y equal arccos(x) : y=arccos(x). So x = cos(y), and dx/dy = -sin(y). dy/dx is therefore -1/sin(y). from trig indentities: sin(y) = sqrt(1-cos^2(y)). Substituting gives dy/dx = -1/sqrt(cos^2(y)) which is the derivative of arccos.

DP
Answered by Daniel P. Further Mathematics tutor

3499 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How does proof by mathematical induction work?


Particles P and Q move in a plane with constant velocities. At time t = 0 the position vectors of P and Q, relative to a fixed point O in the plane, are (16i - 12j) m and -5i + 4j) m respectively. The velocity of P is (i + 2j) m/s and the velocity of Q


How would go about finding the set of values of x for which x+4 > 4 / (x+1)?


write the sum cos(x)+cos(2x)+...+cos(nx) as a quotient only involving sine and cosine functions


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning