Differentiate w.r.t x the expression arccos(x).

Using implicit differentiation, let y equal arccos(x) : y=arccos(x). So x = cos(y), and dx/dy = -sin(y). dy/dx is therefore -1/sin(y). from trig indentities: sin(y) = sqrt(1-cos^2(y)). Substituting gives dy/dx = -1/sqrt(cos^2(y)) which is the derivative of arccos.

Related Further Mathematics A Level answers

All answers ▸

Simplify (2x^3+8x^2+17x+18)/(x+2)


Express cos(4x) in terms of powers of cos(x)


How do I sketch the locus of |z - 5-3i | = 3 on an Argand Diagram?


Find the inverse of a 3x3 matrix


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences