The equation of the line L1 is y=3x–2. The equation of the line L2 is 3y–9x+5=0. Show that these two lines are parallel.

If two lines are parallel, then they will have the same gradient. The gradient of the curve is represented by m in the equation y=mx + c. For this question, if L2 is parallel to L1, m will therefore equal 3 as well. To prove this, we must rearrange and simplify the given equation for L2.3Y-9X+5=0, we will start by putting the y and the x on opposite sides of the equation3Y=9X - 5 we will then divide the whole equation by 3Y= 3X -5/3As we can see, the m in the equation for L2 is also 3, and so L1 and L2 are parallel

Answered by Sophie A. Maths tutor

2492 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The point (-3, -4) is the turning point of the graph of y = x^2 + ax + b, where a and b are integers. Find the values of a and b.


Solve the equations giving your answer in 2d.p (5 Marks).: x^2 + y^2 = 36 , x = 2y + 6


A game consists of 5 cups turned upside down, under one of the cups is a prize. 5 friend's pick a cup in turn and lifts it up, if they get the prize, they win , but if not, the cup is removed and the next friend picks. What position is it best to pick?


Expand and and simplify (x^2 + 7) (x - 1)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences