Differentiate xcos(x) with respect to x

We have two functions multiplied together: x and cos(x).

Therefore we have to use the product rule.

First differentiate x and leave cos(x) untouched, so we get 1(cos(x))=cos(x). Then differentiate cos(x) and leave x untouched giving us x(-sin(x))=-xsin(x).

Finally add the two parts together which gives us cos(x) + -xsin(x)=cos(x)-xsin(x).

IL
Answered by Ioannis L. Maths tutor

42406 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation 16*y^3 + 9*x^2*y - 54*x = 0 a)Find dy/dx in terms of x and y


Differentiate the function y = 26 + x - 4x³ -½x^(-4)


The function f(x) is defined by f(x) = 1 + 2 sin (3x), − π/ 6 ≤ x ≤ π/ 6 . You are given that this function has an inverse, f^ −1 (x). Find f^ −1 (x) and its domain


Express x^2+3x+2 in the form (x+p)^2+q, where p and q are rational numbers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences