The curve C has the equation y=((x^2+4)(x-3))/2*x where x is not equal to 0 . Find the tangent to the curve C at the point where x=-1 in the form y=mx+c

Firstly we need to expand out y into a series of terms to make it easier for us to compute the derivative . You multiply out the brackets to get y=(x3-3x2+4x-12)/2x then we divide each of the terms of the numerator by 2x , y=1/2x2-3/2x+2-6x-1 (where 6x-1=6/x). Now we differentiate y in term of x . In order to do this we multiply the term by the current power and subtract 1 from the current power i.e. y=xn. dy/dx=nx(n-1), dy/dx= x - 3/2 +6x-2. . To find the gradient of C we must substitute the x value (-1) into the derivative of y . When a line is a tangent it has the same gradient as the original line so the tangent will have the same gradient as C , dy/dx= -1-3/2+6 = 7/2 . We are not given the y coordinate so we must substitute the x coordinate into the orginal equation to give us the y value at x=-1 , y=((1+4)(-1-3)) / -2 = 10. So we can use the general equation of a line , y=mx+c where m= gradient and x and y are points on the line , to find the constant c . 10=7/2(-1) +c We now rerange this equation to find the value of the constant c , c=10+7/2=27/2 . We now have all the pieces need to form the equation , so we substitute c back into the equation of a line , y=7/2x +27/2. This is now the equation of the line in the form y=mx+c

Answered by Ellie M. Maths tutor

11042 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate with respect to 'x' : ln(x^2 + 3x + 5)


How does finding the gradient of a line and the area under a graph relate to real world problems?


What is an easy way to remember how sin(x) and cos(x) are differentiated and integrated?


Given that y = 16x + 1/x , find the two values of x for which dy/dx = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences