Find the eigenvalues and eigenvectors of A = ([2, 0 , 0], [0, 1, 1], [0, 3, 3])

We can use the characteristic equation, det(A - kI) = 0 to find the eigenvalues of A. Performing this, we see that(2-k) * ( (1-k)(3-k) - 3 ) = 0.Immediately, we can see a root is k = 2, which is our first eigenvalue, so we now just need to solve (1-k)(3-k) - 3 = 0 for our other two. This gives k2 - 4k = 0, which we can factorise to obtain (k -4)(k ) = 0.So our other two roots are 4 and 0.Now, we perform Ax = k x for a general vector x = (a, b, c) to obtain our eigenvectors, x_1, x_2, x_3. k = 2 gives x_1 = (1, 0 , 0), x_2 = (0,1,3), and x_3 = (0, -1, 1). We can see this for x_1 as A(a,b,c) = (2a+ 2b + 2b, b+c, 3b + 3c) = 2*(a+b+c, (b+c)/2, 2/3*(b+c)). So b + c must be equal to zero, and we are free to choose a = 1.

CT
Answered by Charles T. Further Mathematics tutor

2664 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Unfortunately this box is to small to contain the question so please see the first paragraph of the answer box for the question.


How do you prove by induction?


Differentiate artanh(x) with respect to x


Use de Moivre’s theorem to show that, (sin(x))^5 = A sin(5x) + Bsin(3x) + Csin(x), where A , B and C are constants to be found.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning