f(x)=12x^2e^2x - 14, find the x-coordinates of the turning points.

f(x)=(12x^2)(e^2x) - 14, so using the chain rule f'(x)=(24x)(e^2x) + (12x^2)(2e^2x).To find the turning points set f'(x)=0, so (24x)(e^2x) + (24x^2)(e^2x) = 0. Thus (24xe^2x)(1+x)=0. Thus x=0 or x=-1.

Answered by Charlotte H. Maths tutor

2880 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate with respect to x: y = xln[2x]


Integrate the function f(x) = ax^2 + bx + c over the interval [0,1], where a, b and c are constants.


Simplify the following C4 question into it's simplest form: (x^4-4x^3+9x^2-17x+12)/(x^3-4x^2+4x)


A ball is thrown vertically upwards with a speed of 24.5m/s. For how long is the ball higher than 29.4m above its initial position? Take acceleration due to gravity to be 9.8m/s^2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences