Find the area enclosed between the curves y = f(x) and y = g(x)

Don't forget, in order to find the area under a curve y=f(x) between two values x=a and x=b we integrate f(x) between a and b.Thus to find the area enclosed between two curves y=f(x) and y=g(x) we simply need to integrate (g(x)-f(x)), with the negative in front of whichever function has smaller values between a and b. We can go through an example to see how this works.Find the area enclosed between the curves y = x2 + 2x + 2 and y = -x2 +2x + 10.Equate the two and simplify to get a=-2, b=2.-x2 +2x + 10 is larger, so this is g(x) and we must integrate g(x) - f(x) = -2x2 + 8.This integration yields -2x3/3 + 8x, which when evaluated at a=-2, b=2 gives 64/3.

Answered by Matthew G. Maths tutor

4946 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = 3x^3 - 7x + 10. Point A(-1, 14) lies on this curve. Find the equation of the tangent to the curve at the point A.


Consider the function y = x.sin(x); differentiate the function with respect to x


A curve has the equation 6x^(3/2) + 5y^2 = 2 (a) By differentiating implicitly, find dy/dx in terms of x and y. (b) Hence, find the gradient of the curve at the point (4, 3).


ABCDEF


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences