Find the area enclosed between the curves y = f(x) and y = g(x)

Don't forget, in order to find the area under a curve y=f(x) between two values x=a and x=b we integrate f(x) between a and b.Thus to find the area enclosed between two curves y=f(x) and y=g(x) we simply need to integrate (g(x)-f(x)), with the negative in front of whichever function has smaller values between a and b. We can go through an example to see how this works.Find the area enclosed between the curves y = x2 + 2x + 2 and y = -x2 +2x + 10.Equate the two and simplify to get a=-2, b=2.-x2 +2x + 10 is larger, so this is g(x) and we must integrate g(x) - f(x) = -2x2 + 8.This integration yields -2x3/3 + 8x, which when evaluated at a=-2, b=2 gives 64/3.

MG
Answered by Matthew G. Maths tutor

5844 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express the polynomial x^3+x^2-14x-24 as a product of three linear factors.


A particle of mass m moves from rest a time t=0, under the action of a variable force f(t) = A*t*exp(-B*t), where A,B are positive constants. Find the speed of the particle for large t, expressing the answer in terms of m, A, and B.


How to differentiate y=(x^2+4x)^5


A straight line passes through the point (2,1) and has a gradient of 3. Find the co-ordinates of the points where this line intersects the axes


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning