It is not clear what to do when starting, but we realise that by making both sides to the power of two, will lead to have an expression containing sin^2(x) + cos^2(x), which is equal to one (which will probably make things easier):
sin^2(x) + cos^2(x) + 2sin(x)cos(x) = 4/91 + 2sin(x)cos(x) = 4/9 2sin(x)cos(x) = -5/9
We also know thanks to double angle identities that 2sin(x)cos(x) is just sin(2x) so we just substitute:
sin(2x) = -5/9
Now we have an expression in terms of sine, but we want it in terms of cos. We take a look at the formulas for double angles (double angle identities) and find out that cos(2k)= 1-2sin^2(k). It is fairly straight forward to solve from this point but to make it simpler, it is useful to make k=2x. So thatcos(4x) = 1-2sin^2(2x)
We know what sin(2x) is socos(4x) = 1- 2* (25/81)cos(4x) = 31/81