You are given the equation y=x^2. Determine whether or not the equation has any maximums or minimums and identify them (whether they are maximums or minimums).

The question has given us a function and wants us to determine whether or not any maximums/minimums exist (and if so identify then). We know maximums/minimums occur when the derivative of the equation is equal to zero. Hence we can different x^2 with respect to x, this gives us dy/dx=2x. As mentioned, the point occurs when dy/dx (the derivative) is zero. This gives us 2x=0, hence x=0, is going to be either a maximum or minimum.To determine which one it is, we must differentiate again. Differentiating 2x with respect to x gives us 2. As 2 is greater than 0, we know this is a minimum. (If it was negative, it would be a maximum, and if it equals zero it will be a stationary point of inflection.)

LM
Answered by Lana M. Maths tutor

3011 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A block of mass 5kg is on a rough slope inclined at an angle of 30 degrees to the horizontal, it is at the point of sliding down the slope. Calculate the coefficient of friction between the block and the slope.


Integrate the following by parts integral (lnx) dx


Split (3x-4)/(x+2)(x-3) into partial fractions


Find the derivative with respect to x and the x-coordinate of the stationary point of: y=(4x^2+1)^5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning