Find the gradient of the tangent and the normal to the curve f(x)= 4x^3 - 7x - 10 at the point (2, 8)

y = 4x3 - 7x -10The gradient of the function at any point can be found using its derivative:dy/dx = 12x2 - 7The gradient of the function, m1, at (2,8) is equal to the gradient of the tangent at that point:m1 = 12(2)2 - 7 = 48 - 7 = 41Since the tangent and normal to a given point are perpendicular, their respective gradients form the equation below:m1m2 = -1, where m2 is the gradient of the normal=> m2 = -1/m1 = -1/41

MP
Answered by Miss P. Maths tutor

5289 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrating sin^5(x)cos(x) (in slow logical steps)


Find the value of: d/dx(x^2*sin(x))


Let C : x^2-4x+2k be a parabola, with vertex m. By taking derivatives or otherwise discuss, as k varies, the coordinates of m and, accordingly, the number of solutions of the equation x^2-4x+2k=0. Illustrate your work with graphs


Find the equation of the tangent of the curve y = (8x)/(x-8) at the point (0,0)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning