Find the gradient of the tangent and the normal to the curve f(x)= 4x^3 - 7x - 10 at the point (2, 8)

y = 4x3 - 7x -10The gradient of the function at any point can be found using its derivative:dy/dx = 12x2 - 7The gradient of the function, m1, at (2,8) is equal to the gradient of the tangent at that point:m1 = 12(2)2 - 7 = 48 - 7 = 41Since the tangent and normal to a given point are perpendicular, their respective gradients form the equation below:m1m2 = -1, where m2 is the gradient of the normal=> m2 = -1/m1 = -1/41

MP
Answered by Miss P. Maths tutor

5215 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Write down the values of (1) loga(a) and (2) loga(a^3) [(1) log base a, of a (2) log base a of (a^3)]


How do you find the minimum of the equation sin^2(x) + 4sin(x)?


How would you find the coordinates of the intersections of a graph with the x and y axes, and the coordinates of any turning points?


How would you differentiate ln(sin(3x))?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning