Find the gradient of the tangent and the normal to the curve f(x)= 4x^3 - 7x - 10 at the point (2, 8)

y = 4x3 - 7x -10The gradient of the function at any point can be found using its derivative:dy/dx = 12x2 - 7The gradient of the function, m1, at (2,8) is equal to the gradient of the tangent at that point:m1 = 12(2)2 - 7 = 48 - 7 = 41Since the tangent and normal to a given point are perpendicular, their respective gradients form the equation below:m1m2 = -1, where m2 is the gradient of the normal=> m2 = -1/m1 = -1/41

Answered by Miss P. Maths tutor

4846 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Core 3: Find all the solutions of 2cos(2x) = 1-2sin(x) in the interval 0<x<360


The line AB has equation 5x + 3y + 3 = 0 and it intersects the line with equation 3x - 2y + 17 = 0 at the point B. Find the coordinates of B.


Given (x-2) is a factor of ax^3 + ax^2 + ax - 42, find the value of a


G(x)=x^3 + 1, h(x)=3^x; solve G(h(a))=244


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences