Find minimum and maximum of x^2+1 if they exist

There are several methods of finding the extrema(plural of extremums or in other words minimum or maximum values) of a function.

For now we will analyse the function using the dy/dx of f(x)=y=x+1, f`(x) = 2x
The sign of the diferentiation of the function change at x=0. Therefore for x<0 dy/dx<0 and the function is declining. For x>0 dy/dx>0 and the function is uprising. We can conclude that there is a minimum at x=0. We cannot find a maximum of the function as it approaches infinity.
 

PG
Answered by Pavel G. Maths tutor

4352 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = 3x^3 - 7x + 10. Point A(-1, 14) lies on this curve. Find the equation of the tangent to the curve at the point A.


What is an improper fraction, and how to I make thisproper so that it can be differentiated?


What is the sum of the first 10 terms of the geometric series 32 + 16 + 8 + ... ?


Find the first 3 terms, in ascending powers of x, of the binomial expansion of (2 – 9x)^4 giving each term in its simplest form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences