Find minimum and maximum of x^2+1 if they exist

There are several methods of finding the extrema(plural of extremums or in other words minimum or maximum values) of a function.

For now we will analyse the function using the dy/dx of f(x)=y=x+1, f`(x) = 2x
The sign of the diferentiation of the function change at x=0. Therefore for x<0 dy/dx<0 and the function is declining. For x>0 dy/dx>0 and the function is uprising. We can conclude that there is a minimum at x=0. We cannot find a maximum of the function as it approaches infinity.
 

PG
Answered by Pavel G. Maths tutor

4853 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has an equation y = sin(2x)cos(x)^2. Find dy/dx. Find normal to curve at x = pi/3 rad, giving answer in exact form.


How do I get the eigenvalues, x, of a matrix, M, with eigenvectors, v?


Complete the square for the following equation: 2x^2+6x-3=0


Prove that sec^2(θ) + cosec^2(θ) = sec^2(θ) * cosec^2(θ)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning