Use the substitution u = cos 2x to find ∫(cos^2*(2x) *sin3 (2x)) dx

∫(cos2 2x *sin3 2x)dx u = cos2x - u =(du/dx) = -2sin2x - differentiate u dx = du/(-2sin(2x)) - dx = -1/2 ∫cos22x * sin22x du - sub in dx-1/2 ∫u2(1-u2)du - put in terms if u -1/2 [ u3/3 - u5/5 ] + c - integrate in terms of u (cos52x)/10 - (cos32x)/6 - Final answer





Answered by Will B. Maths tutor

7237 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that: y = 3x^2 + 6x^1/3 + (2x^3 - 7)/(3x^1/2), x > 0 Find dy/dx, give each term in its simplest form


Can you please explain how to expand two brackets, eg. (3x-7)(5x+6)


Find the derivative of sin^2(x)


find the integral of y=x^2 +sin^2(x) with respect to x between the limits 0 and pi


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences