Find the x coordinate of the stationary points of the curve with equation y = 2x^3 - 0.5x^2 - 2x + 4

Firstly, to find the stationary points of a curve you must differentiate the equation of the curve. To do this each x component is multiplied by its current power and then the power is decreased by one. Any terms without x are simply removed. This gives dy/dx = 6x^2 - x - 2. For stationary points the derivative is then set equal to 0. In this case to find the x values the derivative should be factorised, giving (2x+1)(3x-2)=0. Each of these can be treated separately as (2x+1)=0 and (3x-2)=0. These can then be rearranged to give x = 1/2 and x = 2/3.

Answered by Bartosz S. Maths tutor

4425 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate (4cos^4 x -4cos^2x+1)^1/2


Differentiate the function f(x) = x*sin(x)


How do I find the co-ordinates and nature of the stationary points on a curve?


Express 3sin(2x) + 5cos(2x) in the form Rsin(2x+a), R>0 0<a<pi/2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences