Given that 7/9 = 0.77777777 (recurring) convert 0.27777777(recurring) into a fraction. Give your answer in the simplest form.

if 7/9 = 0.777777 then 0.0777777 must be equal to 7/90 as it is a tenth of the original number. 0.2= (2/10)(7/90) + (2/10) = 0.27777777 find the lowest common multiple: 90, then make the denominators of each fraction this value via multiplication, multiplying the numerators by the same amount. This results in....(7/90)*1=(7/90) and (2/10)*9=(18/90). Now that the denominators are the same you can find the sum of the fractions by adding the numerators... 7+9=16 thus (7/90) + (2/10) = (25/90). Now to get the fraction in its simplest form you must find the highest common factor between the new numerator and denominator. In this case it is 5 (can be found by looking at all of 25's factor pairs and determining whether 90 is divisible by the amount). Therefore 0.27777777 in its simplest form is...(25/90)/2=(5/18)

NK
Answered by Nial K. Maths tutor

5261 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve x^2 -4x=12


Claire drove from Manchester to London, it took her 4 hours at an average speed of 85 km/h. Matt drove from Manchester to London, it took him 5 hours. Assuming he took the same route as Claire and took no breaks, work out his average speed in km/h.


Solve algabraically: 6a+b=16 and 5a-2b=19


Sarah asked 20 people at a tennis tournament how they travelled there. She found that 13 of them travelled by car. Estimate how many of the total 2000 people at the tournament travelled by car.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning