Solve the inequality x^2 - 9 > 0

This is a quadratic inequality, because we have an x2 term, so we answer this question by examining the graph of the associated equation y = x2 - 9, and then find out where this graph is greater than 0.So first, we find where the equation, y = x2 - 9 is equal to zero (i.e. y = 0). This is simply solving a quadratic, which we do by factorising and equating each term in brackets to zero, i.e.:x2 - 9 = 0This is the difference of two squares, so the factorisation should be relatively familiar.(x+3)(x-3) = 0Therefore x= - 3 or x = 3.This tells us that the graph crosses the x-axis at x=3 and x=-3.Then, we need to consider what the rest of the graph looks like. Since the equation y = x2 - 9 has a positive x2 term, this graph must be a positive parabola (U-shape) graph. Putting this all together we can sketch a graph of the equation, and now we look back to our original inequality, which asks for when this graph (when the y-values) are greater than zero. We can see this happens when either x > 3 or when x< -3 and so this is our solution.

RH
Answered by Rose H. Maths tutor

16792 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve A (y = x3 – x2 + x -1) is perpendicular to the straight-line B at the point P (5, 2). If A and B intersect at P, what is the equation of B? Also, find any stationary points of the curve A.


What is differentiation and why is it useful?


You're on a game show and have a choice of three boxes, in one box is £10, 000 in the other two are nothing. You pick one box, the host then opens one of the other boxes showing it's empty, should you stick or switch?


Given two coordinate points (a1,b1) and (a2,b2), how do I find the equation of the straight line between them?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning