Solve the inequality x^2 - 9 > 0

This is a quadratic inequality, because we have an x2 term, so we answer this question by examining the graph of the associated equation y = x2 - 9, and then find out where this graph is greater than 0.So first, we find where the equation, y = x2 - 9 is equal to zero (i.e. y = 0). This is simply solving a quadratic, which we do by factorising and equating each term in brackets to zero, i.e.:x2 - 9 = 0This is the difference of two squares, so the factorisation should be relatively familiar.(x+3)(x-3) = 0Therefore x= - 3 or x = 3.This tells us that the graph crosses the x-axis at x=3 and x=-3.Then, we need to consider what the rest of the graph looks like. Since the equation y = x2 - 9 has a positive x2 term, this graph must be a positive parabola (U-shape) graph. Putting this all together we can sketch a graph of the equation, and now we look back to our original inequality, which asks for when this graph (when the y-values) are greater than zero. We can see this happens when either x > 3 or when x< -3 and so this is our solution.

Answered by Rose H. Maths tutor

12778 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is a moment and how do I calculate it?


How do you simplify something of the form Acos(x) + Bsin(x) ?


4. The curve C has equation 4x^2 – y3 – 4xy + 2y = 0. P has coordinates (–2, 4) lies on C. (a) Find the exact value of d d y x at the point P. (6) The normal to C at P meets the y-axis at the point A. (b) Find the y coordinate of A


A function is defined parametrically as x = 4 sin(3t), y = 2 cos(3t). Find and simplify d^2 y/dx^2 in terms of t and y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences