Given that A(sin θ + cos θ) + B(cos θ − sin θ) ≡ 4 sin θ, find the values of the constants A and B.

Since this must be true for all values of θ, and cos and sin are distinct functions, no non-zero multiple of cosθ could ever be equal to 4 sinθ for all values of θ. Therefore, the overall multiple of cosθ on the left-hand-side must be 0.
Therefore, Acosθ + Bcosθ ≡ 0and (A+B) cosθ ≡ 0so A = - B
We can then plug this back into the equation to solve for A:A(sinθ + cosθ) - A(cosθ - sinθ) ≡ 4sinθAsinθ - (-Asinθ) = 4sinθ [the cosθ terms cancel one another out]Asinθ + Asinθ = 4sinθ2A = 4A = 2B = - A = - 2

Answered by David B. Maths tutor

6419 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

State the conditions under which a binomial distribution can be approximated as a normal distribution, and state how the parameters needed would be calculated.


Factorise 6x^2 + 7x - 3=0


y = 1/x^2, differentiate y (taken from AQA 2018 past paper)


The second and fifth terms of a geometric series are 750 and -6 respectively. Find: (1) the common ratio; (2) the first term of the series; (3) the sum to infinity of the series


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences