Given that A(sin θ + cos θ) + B(cos θ − sin θ) ≡ 4 sin θ, find the values of the constants A and B.

Since this must be true for all values of θ, and cos and sin are distinct functions, no non-zero multiple of cosθ could ever be equal to 4 sinθ for all values of θ. Therefore, the overall multiple of cosθ on the left-hand-side must be 0.
Therefore, Acosθ + Bcosθ ≡ 0and (A+B) cosθ ≡ 0so A = - B
We can then plug this back into the equation to solve for A:A(sinθ + cosθ) - A(cosθ - sinθ) ≡ 4sinθAsinθ - (-Asinθ) = 4sinθ [the cosθ terms cancel one another out]Asinθ + Asinθ = 4sinθ2A = 4A = 2B = - A = - 2

Answered by David B. Maths tutor

7176 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify √32 + √18 giving your answer in the form of a√2.


Find the stationary point(s) of the curve: y = 3x^4 - 8x^3 - 3.


Solve the simultaneous equations: y - 3x + 2 = 0 y^2 - x - 6x^2 = 0


A curve C has the equation x^3 + 6xy + y^2 = 0. Find dy/dx in terms of x and y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences