y = 4(x^3) + 7x ... Find dy/dx

This is a simple differentiation question. To start, you need to know the general method of differentiation. This is:
if y = Axb then dy/dx = (A*b)xb-1
There are two terms to differentiate in this problem, in the first term, you bring down the 3 and multiply it with 4 to get 12. Then reduce the power by one according to the equation. By executing the same method with the second term, you multiply 7 by 1 since the power of x is 1. Then, you once again reduce the power by 1, which causes it to become x0 which is equal to 1. You are therefore left with 7.
Therefore the answer is dy/dx = 12x2 + 7

Answered by Emilio E. Maths tutor

2803 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

what is the integral of ln(x)


How do I find the stationary points on the curve y = f(x) = x^3+6x^2-36x?


What is the equation of the tangent to the circle (x-5)^2+(y-3)^2=9 at the points of intersection of the circle with the line 2x-y-1=0


Integrate dy/dx = 2x/(x^2-4)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences