Find the equation of the tangent to the curve y = 4x^2 (x+3)^5 at the point (-1, 128).

y = 4x2(x+3)5 . Use the product rule to find the first derivative of the curve, 8x(x+3)5 + 20x2(x+3)4 , and substitute x = -1 to find the gradient at the point (-1, 128). This should be 64. Now substitute x = -1 and y = 128 into the equation y = mx + c where m = 64 and c is the unknown y-intercept. Solving the equation shows that c = 192. The equation of the tangent is y = 64x + 192.

JG
Answered by Jack G. Maths tutor

3635 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the differential of y =sin(2x)?


Solve the inequality 6x - 7 + x^2 > 0


Given log3(3b + 1) - log3(a-2) = -1 for a > 2. Express b in terms of a.


Solve the equation 3sin^2(x) + sin(x) + 8 = 9cos^2(x), -180<X<180. Then find smallest positive solution of 3sin^2(2O-30) + sin(2O-30) + 8 = 9cos^2(2O-30).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning