Find the equation of the tangent to the curve y = 4x^2 (x+3)^5 at the point (-1, 128).

y = 4x2(x+3)5 . Use the product rule to find the first derivative of the curve, 8x(x+3)5 + 20x2(x+3)4 , and substitute x = -1 to find the gradient at the point (-1, 128). This should be 64. Now substitute x = -1 and y = 128 into the equation y = mx + c where m = 64 and c is the unknown y-intercept. Solving the equation shows that c = 192. The equation of the tangent is y = 64x + 192.

JG
Answered by Jack G. Maths tutor

3454 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given y= sqrt(x) + 4/sqrt(x) + 4 , find dy/dx when x=8 giving your answer in form Asqrt(2) where A is a rational number.


Differentiating (x^2)(sinx) Using the Product Rule


Differentiate with respect to x: F(x)=(x^2+1)^2


Using the result: ∫(2xsin(x)cos(x))dx = -1⁄2[xcos(2x)-1⁄2sin(2x)] calculate ∫sin²(x) dx using integration by parts


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning