Find the equation of the tangent to the curve y = 4x^2 (x+3)^5 at the point (-1, 128).

y = 4x2(x+3)5 . Use the product rule to find the first derivative of the curve, 8x(x+3)5 + 20x2(x+3)4 , and substitute x = -1 to find the gradient at the point (-1, 128). This should be 64. Now substitute x = -1 and y = 128 into the equation y = mx + c where m = 64 and c is the unknown y-intercept. Solving the equation shows that c = 192. The equation of the tangent is y = 64x + 192.

Answered by Jack G. Maths tutor

3076 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When do you use integration by parts?


Given y = ln((2x+3)/(7x^3 +1)). Find dy/dx


Integration by parts: Integrate the expression x.ln(x) between 1 and 2.


Express x^2+3x+2 in the form (x+p)^2+q, where p and q are rational numbers.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences