Use completing the square to find the minimum of y = x^2 - 4x + 8

Remember completing the square gives a result of the form (x+q)2 + p where q and p are numbers
Also q is always half of the x term, which in this case is -4, as such q = -2
Substituting this in, we get (x-2)2 which expands to x2 - 4x + 4. To make this equal to our original equation, we need to add 4, getting us y = (x-2)2 + 4.
As a rule, the minimum point is always x = -q, y = p. Therefore our answer is (2,4)

SD
Answered by Sol D. Maths tutor

3353 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

X is a prime number higher than the square of 5 and lower than the square of 7. What are the smallest and largest possible values for X?


2(y+3) = 10. What is y?


Question: Factorise the expressions: 1. X^2 - 9 2. 2X^2 - 14X + 24


Without expanding any brackets, work out the solutions of 9(x+3)^2 = 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning