Firstly, for the points of intersection we need to equate the two expressions for y. Since we know that they intersect at the origin, we can immediately cancel the x values and then solve the quadratic for the remaining points. The first line (y=(a^2)x) is a line through the origin and the second is a cubic, also through the origin. The repeated factor in y = x(b – x)^2 indicates tangency at x = b so we have a positive cubic that goes through the origin and then just touches the x axis at x=b. Next, for the equation of the tangent, we need to differentiate, and then substitute our value of x in order to get the gradient of the tangent at this point. Using this gradient and the values of x and y at the point P, we can then calculate the y-intercept and therefore the equation of our tangent line.