The line y = (a^2)x and the curve y = x(b − x)^2, where 0<a<b , intersect at the origin O and at points P and Q. Find the coordinates of P and Q, where P<Q, and sketch the line and the curve on the same axes. Find the tangent at the point P.

Firstly, for the points of intersection we need to equate the two expressions for y. Since we know that they intersect at the origin, we can immediately cancel the x values and then solve the quadratic for the remaining points. The first line (y=(a^2)x) is a line through the origin and the second is a cubic, also through the origin. The repeated factor in y = x(b – x)^2 indicates tangency at x = b so we have a positive cubic that goes through the origin and then just touches the x axis at x=b. Next, for the equation of the tangent, we need to differentiate, and then substitute our value of x in order to get the gradient of the tangent at this point. Using this gradient and the values of x and y at the point P, we can then calculate the y-intercept and therefore the equation of our tangent line.

Answered by Josh B. Maths tutor

6118 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I know how to integrate, but I still never see any real world example of it, so it is difficult to understand. Why is it useful?


find the integral between the limits 0 and pi/2 of sin(x)cos(x) with respect to x.


Why does the second derivative tell us something about a function?


How to integrate ln(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences