Differentiate x^2 ln(3x) with respect to x

This question requires the use of differentiation by product rule. First differentiate the first term, whilst keeping the second term the same, i.e. we get 2xln(3x). Secondly we keep the first term the same, and differentiate the second term, meaning it becomes x2(1/x), and thus our overall answer would be adding both of the things we got up (as that's the product rule). Thus the answer would be 2xln(3x) + x.

RF
Answered by Ricky F. Maths tutor

13212 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A ball is thrown in the air. The height of the ball at time t is given by: h=5+4t-2t^2. What is its maximum height? At what time does the ball reach this height?


Show that the volume of the solid formed by the curve y=cos(x/2), as it is rotated 360° around the x-axis between x= π/4 and x=3π/4, is of the form π^2/a. Find the constant a.


Find the exact solution to the equation: ln(3x-7) =5


If y = 4x^3 - 6x^2 + 7 work out dy/dx for this expression


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning