How do we differentiate y=a^x when 'a' is an non zero real number

Firstly we must change it into a form we can deal with. To do this we take the natural log (ln) of both sides.ln(y)=ln(ax) ln(y)=x(ln(a))    using our rules of logsFrom here we differentiate. The differential of ln(f(x)) is [(d/dx)f(x)]/f(x)(dy/dx)/y=ln(a)      differentiating from above rule and ln(a) is just a constant so d/dx xln(a)= ln(a)dy/dx=yln(a)    times both sides by ydy/dx=(ax)(ln(a)) subbing in y=ato get dy/dx in terms of x

MJ
Answered by Marcus J. Maths tutor

8092 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = 5x^3 + 7x + 3 with respect to x


By using the substitution x = tan(u), find the integral of [1 / (x^2+1) dx] between the limits 1 and 0


How do you sketch r=theta? I don't really understand polar coordinates.


Find the inverse of y = (5x-4) / (2x+3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning