How do we differentiate y=a^x when 'a' is an non zero real number

Firstly we must change it into a form we can deal with. To do this we take the natural log (ln) of both sides.ln(y)=ln(ax) ln(y)=x(ln(a))    using our rules of logsFrom here we differentiate. The differential of ln(f(x)) is [(d/dx)f(x)]/f(x)(dy/dx)/y=ln(a)      differentiating from above rule and ln(a) is just a constant so d/dx xln(a)= ln(a)dy/dx=yln(a)    times both sides by ydy/dx=(ax)(ln(a)) subbing in y=ato get dy/dx in terms of x

Answered by Marcus J. Maths tutor

7410 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the indefinite integral of ln(x)?


The second and fourth term of a geometric series is 100 and 225 respectively. Find the common ratio and first term of the series. Round your answer to 2 d.p if necessary


We are given y=(x^2)+3x-5. Find the derivative of y in terms of x.


Solve the simultaneous equations: y=x+1, x^2+y^2=13


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences