Differentiate cos(2x^3)/3x

Using quotient rule y = u/v - dy/dx = (v.du/dx - u.dv/dx)/v2.u = cos(2x3) , a = 2x3. du/da = -sin(a), da/dx = 6x2. From chain rule, we know that du/dx = du/da . da/dx, so du/dx = -6x2sin(2x3). We know that dv/dx = 3. We now have all the necessary terms to configure dy/dx: dy/dx =( 3x . -6x2sin(2x3)-3cos(2x3))/9x2 = (-18x3sin(2x3) - 3cos(2x3))/9x2

Answered by Charlie W. Maths tutor

7935 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve for 0 =< x =< 360 16/(cos(x+25)+1) = 10, give answers to 2 d.p.


For which values of x is the following inequality satsified: x^2 + 6x + 6 < 1


Show that cosh(x+y) = cosh(x)cosh(y) + sinh(x)sinh(y)


Differentiate y = 2x^3 + 6x^2 + 4x + 3 with respect to x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences