Differentiate cos(2x^3)/3x

Using quotient rule y = u/v - dy/dx = (v.du/dx - u.dv/dx)/v2.u = cos(2x3) , a = 2x3. du/da = -sin(a), da/dx = 6x2. From chain rule, we know that du/dx = du/da . da/dx, so du/dx = -6x2sin(2x3). We know that dv/dx = 3. We now have all the necessary terms to configure dy/dx: dy/dx =( 3x . -6x2sin(2x3)-3cos(2x3))/9x2 = (-18x3sin(2x3) - 3cos(2x3))/9x2

Answered by Charlie W. Maths tutor

8125 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of xcosx(dx)


How do I use numerical methods to find the root of the equation F(x) = 0?


The complex numbers Z and W are given by Z=3+3i and W=6-i. Giving your answers in the form of x+yi and showing how you clearly obtain them, find: i) 3Z-4W ii) Z*/W


How to differentiate e^x . sin(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences