A curve is defined by the parametric equations x = 2t and y = 4t^2 + t. Find the gradient of the curve when t = 4

the gradient of the curve = dy/dx
and dy/dx = (dy/dt)(dt/dx)
dy/dt = 8t + 1
dx/dt = 2 therefore dt/dx = 1/2
dy/dx as above = (8t + 1) * 1/2 = (8t + 1)/2
where t = 4, dy/dx = (8*4 + 1)/2 = (32 + 1)/2 = 33/2

AB
Answered by Angus B. Maths tutor

5581 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve y = 2x^3 -ax^2 +8x+2 passes through the point B where x = 4. Given that B is a stationary point of the curve, find the value of the constant a.


How do i know where a stationary point is and what type of stationary point it is?


Explain the basics of projectile motion


Solve the simultaneous equations: x^2 + y^2 = 10 and x + 2y = 5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning