A curve is defined by the parametric equations x = 2t and y = 4t^2 + t. Find the gradient of the curve when t = 4

the gradient of the curve = dy/dx
and dy/dx = (dy/dt)(dt/dx)
dy/dt = 8t + 1
dx/dt = 2 therefore dt/dx = 1/2
dy/dx as above = (8t + 1) * 1/2 = (8t + 1)/2
where t = 4, dy/dx = (8*4 + 1)/2 = (32 + 1)/2 = 33/2

Answered by Angus B. Maths tutor

4802 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area under the curve of y=1/(3x-2)^0.5 between the limits x=1 and x=2 and the line y=0


Show that (sec(x))^2 /(sec(x)+1)(sec(x)-1) can be written as (cosec(x))^2.


The curve C has equation y = x^3 - 2x^2 - x + 9, x > 0. The point P has coordinates (2, 7). Show that P lies on C.


Differentiate with respect to x, y = (x^3)*ln(2x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences