A curve is defined by the parametric equations x = 2t and y = 4t^2 + t. Find the gradient of the curve when t = 4

the gradient of the curve = dy/dx
and dy/dx = (dy/dt)(dt/dx)
dy/dt = 8t + 1
dx/dt = 2 therefore dt/dx = 1/2
dy/dx as above = (8t + 1) * 1/2 = (8t + 1)/2
where t = 4, dy/dx = (8*4 + 1)/2 = (32 + 1)/2 = 33/2

AB
Answered by Angus B. Maths tutor

5583 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

We are given y=(x^2)+3x-5. Find the derivative of y in terms of x.


A curve has equation y = 20x −x^2 −2x^3 . Find its stationary point(s).


The circle C has centre (2,1) and radius 10. The point A(10,7) lies on the circle. Find the equation of the tangent to C at A and give it in the form 0 =ay + bx + c.


Why is the derivative of x^2 equal to 2x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning