P (–1, 4) is a point on a circle, centre O which is at the origin. Work out the equation of the tangent to the circle at P. Give your answer in the form y = mx + c

A tangent makes an angle of 90 degrees with the radius of a circle.Using this fact, we find the gradient of the radius going through P = -4Therefore gradient of the tangent to the circle at P is -1/-4 = 1/4Then use equation for a straight line: y - y1 = m(x-x1) where x1 and y1 are the x and y coordinates of P respectively (-1,4)So we get that y = (1/4) x + 17/4

CG
Answered by Charlie G. Maths tutor

9213 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The point P has coordinates (3, 4) The point Q has coordinates (a, b) A line perpendicular to PQ is given by the equation 3x + 2y = 7 Find an expression for b in terms of a


If L1 is y = 3x + 15 and L2 is 3y + 20 = 9x show whether or not L1 and L2 are parallel.


Sketch the graph of y= (x^2) -2x -3 labelling the turning points and points of intersection


Solve the simultaneous equations 3x + y = –4 and 3x – 4y = 6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning