Find the equation of the tangent to the curve y = x2 -3x +5 at the point (1,3).

Find the equation of the tangent to the curve y = x2 -3x +5 at the point (1,3).The tangent is a straight line of the form y = mx+cTo find the gradient, m, we first differentiate the function:dy/dx = 2x -3Then we evaluate at the point (1,3). At this point x =1 , so dy/dx = 2(1) -3 = -1So m = -1, and therefore the tangent is of the form y = -x +cTo find c, we know that the point (1,3) must lie on the tangent and so we substitute these values for x and y into our equation:3 = -(1) +cRearranging gives c = 4Therefore the equation of the tangent is y = -x + 4

Answered by Tilly D. Maths tutor

5806 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Clare buys some shares for $50x. Later, she sells the shares for $(600 + 5x). She makes a profit of x% (a) Show that x^2 + 90x − 1200 = 0


x^2 - y = 14, y - 2 = 6x, solve these equations simultaneously


Given the points (6,6) and (10,8) calculate the gradient of the line passing through them and the point at which it intersects the y-axis?


Solve x^2 - 9 = 4x + 12


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences