A circle has equation x^2+y^2+6x+10y-7=0. Find the equation of the tangent line through the point on the circle (-8,-1).

The circle can be written (x+3)2+(y+5)^2 = 41 and so has center (-3,-5).
The gradient through the center and the point (-8,-1) is;m = (-5+1)/(-3+8) = -4/5.
The tangent line is perpendicular to this so has gradient;mt= 5/4.
Now we have, y = (5/4)x + c. To find c we use the point on the line (-8,-1);-1 = (5/4)*-8 = c, c = -1 +10 = 9.
So the final answer is y = (5/4)x + 9.

Answered by Rhianna L. Maths tutor

979 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

y=x^3-3x^2+2x+5 a)Write down the coordinates of P the point where the curve crosses the x-axis. b)Determine the equation of the tangent to the curve at P. c)Find the coordinates of Q, the point where this tangent meets the curve again.


Integrate lnx with respect to x


If f(x) = 1/(6x^2), where x not equal to 0, find the rate of change when x=4.


Determine for what values of c, f(x)=4x^2-(2c+8)x+4 has no real roots.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences