What is the gradient of this curve y=5x^3+6x^2+7x+8 at point x=3?

When differentiating an equation (y) you find the equation of the gradient, called dy/dx. The rule for differentiating a power of x is given below:y=x^n dy/dx= nx^(n-1)Applying this rule to this question you get dy/dx=15x^2+12x+7, this is the equation of the gradient. To find the gradient at x=3, substitute x=3 into dy/dx. This gives the gradient (dy/dx) as 178.

Answered by Tutor179115 D. Maths tutor

3929 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I integrate by parts?


Solve ln(2x-3) = 1


How do you integrate sin^2(3x)cos^3(3x) dx?


The curve y = 2x^3 - ax^2 + 8x + 2 passes through the point B where x=4. Given that B is a stationary point of the curve, find the value of the constant a.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences