a curve is defined by y=2x^2 - 10x +7. point (3, -5) lies on this curve. find the equation of the normal to this curve

equation of tangent is y - y1 = m(x-x1). differentiating y gives us the value of m. so dy/dx = 4x-10. we know x is 3. therefore, dy/dx = m = 2 but we need equation of the normal, which is y-y1=(1/m)(x-x1). 1/m is 1/2. y1 = -5. x1 = 3 putting it all in gives us 2y = x - 13, and that is the equation of the normal to this curve.

Answered by Huy H. Maths tutor

3105 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the turning point of the function y=f(x)=x^2+4x+4 and state wether it is a minimum or maximum value.


Use the chain rule to differentiate y=1/x^2-2x-1


Sketch the graphs of y = f(x), y = g(x) and find the point(s) where f and g intersect.


What are the solutions of (x^3)+6 = 2(x^2)+5x given x = 3 is a solution?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences