a curve is defined by y=2x^2 - 10x +7. point (3, -5) lies on this curve. find the equation of the normal to this curve

equation of tangent is y - y1 = m(x-x1). differentiating y gives us the value of m. so dy/dx = 4x-10. we know x is 3. therefore, dy/dx = m = 2 but we need equation of the normal, which is y-y1=(1/m)(x-x1). 1/m is 1/2. y1 = -5. x1 = 3 putting it all in gives us 2y = x - 13, and that is the equation of the normal to this curve.

HH
Answered by Huy H. Maths tutor

3111 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Is a line ax+by+c=0 tangent to a circle?


Find the coordinates of the turning point of y=e^(2x)*cos(x)?


With log base 4, solve log(2x+3) + log(2x+15) = 1 + log(14x+5)


Find the gradient of the tangent and the normal to the curve f(x)= 4x^3 - 7x - 10 at the point (2, 8)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences