Solve the following simultaneous equations: x^2 + 2y = 9, y = x + 3

When solving simultaneous equations, there are two methods: substitution and elimination. For this question, as one of the equations is a quadratic, the substitution method has to be used. The second equation (y = x + 3) can be used to replace y in the first equation (x^2 + 2y = 9) with x + 3: x^2 + 2(x + 3) = 9 Then we expand the brackets:x^2 + 2x + 6 = 9 Then we subtract 9 from both sides:x^2 + 2x -3 = 0We then factorise this quadratic to get two solutions for x:(x + 3)(x - 1) = 0 x = -3, x = 1Finally, we put the x values back into the equation to get our y values:when x = -3, y= -3 + 3 = 0when x = 1, y = 1 + 3 = 4

Answered by Chloe L. Maths tutor

2433 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Sam takes out a £720 loan. Sam will have to pay back the £720 plus an interest rate of 15%. He will have to pay this back in 12 equal monthly instalments. How much must Sam pay monthly?


Solve the equation 3x squared + 4x – 12 = 0 Give your solutions correct to 2 decimal places.


What are the roots of (2x-5)(x-3) = 0


What is 3!/5! written in standard form?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences