Using the trigonometric identity for tan(A + B), prove that tan(3x)=(3tan(x)-tan^3(x))/(1-3tan^2(x))

tan(3x)=tan(2x+x), by using the identity for tan(A+B)=(tan(A)+tan(B))/(1-tan(A)tan(B)),tan(3x)=tan(2x+x)=(tan(2x)+tan(x))/(1-tan(2x)tan(x)), using it again for tan(2x),tan(3x)=tan(2x+x)=([(tan(x)+tan(x))/(1-tan(x)tan(x))]+tan(x))/(1-[(tan(x)+tan(x))/(1-tan(x)tan(x))]tan(x))which simplifies to ([2tan(x)/(1-tan2(x))]+tan(x))/(1-[(2tan(x))/(1-tan2(x))]tan(x))which will further simplify to [(3tan(x)+tan3(x))/(1-tan2(x))]/[(1-3tan2(x))/(1-tan2(x))]which yields [3tan(x)+tan3(x)]/[1-3tan2(x)] which is what we got asked
link to resolution on paper: https://imgur.com/a/YUuaop9

Answered by Ivan R. Maths tutor

8960 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Three forces, (15i + j) N, (5qi – pj) N and (–3pi – qj) N, where p and q are constants, act on a particle. Given that the particle is in equilibrium, find the value of p and the value of q. (Mechanics 1 June 2017)


Integrate ((7e^(x/2))/4) with respect to x within the bounds of x=0 and x=2. (Basic introduction to definite integration)


How do I find the stationary points of a curve?


Compute the integral of f(x)=x^3/x^4+1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences