Solve the following simultaneous equations: x^2 + y^2 = 29 and y - x =3

This question is slightly trickier than normal simultaneous equations, because we have values to the power of 2. What we can do is make either y or x the subject of the 2nd equation (y-x = 3). For this example, I will choose to make y the subject, which then gives us y = 3 + x. We can use this equation, and substitute it into the value of "y" in the 1st equation, as follows --> x^2 + (3+x)^2 = 29 We can then expand the brackets and simplify: x^2 + x^2 + 6x + 9 = 29 2x^2 + 6x -20 = 0 (it is important to make the equation equal to 0 so that we can solve the equation to find the values of x) x^2 + 3x - 10 = 0 (we can divide the whole equation by 2, as this is a common factor) (x + 5) (x - 2) = 0 (we can factorise the equation to give us 2 brackets; we have found two numbers which multiply to give -10 and add to give +3) .˙. x = -5 and x = 2 (each bracket is made equal to 0 and solved separately, we have two values for x because this is a quadratic equation)Each value is then substituted back into the rearranged 2nd equation (y = 3 + x) which gives us y = -2 and y = 5

Answered by Trushna D. Maths tutor

3265 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Work out the integer values that satisfy: x^2−7 x+ 11<0


A cuboid has sides such that the longest side is two units more than the shortest side, and the middle length side is one unit longer than the shortest side. The total surface area of the cuboid is 52 units². Calculate the length of the shortest side.


Factorise x^(2)​​​​ - 49


Solve algebraically the simultaneous equations: x^2 + y^2 = 25 and y - 3x = 13


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences