What is the indefinite integral of xlog(x)?

The integral can be split into two different functions of x which is a hint that we must use the integration by parts method. The method is defined as ∫ uv’ dx = uv - ∫ u’v dx. If we let u = log(x) and v’ = x and then solve for u’ and v such that u’ = 1/x and v = (1/2)x^2 , we can substitute in the values to find the solution. ∫ u’v dx = (1/2)(x^2)log(x) - ∫ (1/x)*((1/2)x^2) dx then goes to u’v dx = (1/2)(x^2)log(x) - ∫ (1/2)x dx which solves asu’v dx = (1/2)(x^2)log(x) - (1/4)x^2 + C and can be simplified to read as u’v dx = (1/4)(x^2)(2log(x) - 1) + C.

WH
Answered by William H. Maths tutor

4460 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How is the factor theorem used?


Differentiate with respect to x: w=4x^2 + 3sin(2x)


Given ∫4x^3+4e^2x+k intergrated between the bounds of 3 and 0 equals 2(46+e^6). Find k.


The mass, m grams, of a substance is increasing exponentially so that the mass at time t hours is m=250e^(0.021t). Find the time taken for the mass to double in value.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning