Solve the simultaneous equations 6x - 27 = 15 and 4x + 3y = -3.

Initially we have two unknown variables, so we want to eliminate one of the variables (x) to solve for the other (y). The LCM of 6 and 4 is 12, so multiply each equation such that the coefficient of x is 12:2*(6x - 2y = 15) --> 12x - 4y = 303*(4x + 3y = -3) --> 12x + 9y = -9Subtracting equation 2 from equation 1 eliminates the variable x and gives y = -3. This value is then substituted back into one of the original equations to find the value of x. For example:6x - 2(-3) = 156x = 9x = 1.5Therefore, we have our two solutions whereby x = 1.5, y = -3.

Answered by Alannah C. Maths tutor

2986 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the following simultaneous equations: 3x+y=11, 2x+y=8


Given that y = 5, solve the following equation for x, 9x - 3y = 97 - 5x


Solve x^2 - 9 = 4x + 12


How can I tell if two lines are perpendicular from the equations?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences