Find the integral of (2(3x+2))/(3x^2+4x+9).

Start by expanding out the bracket on the top of the fraction to get (6x+4)/(3x2+4x+9). Then using the trick of identifying that the fraction is in the form [g(x)]/[f(x)] where f’(x)=g(x), the solution is ln(f(x)). Hence in this case would be ln(3x2+4x+9). To confirm a student understands why this is the case I would then get them to differentiate ln(3x2+4x+9) to see how this method works.

EN
Answered by Elise N. Maths tutor

3310 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the coefficient of x^4 in the expansion of (x+3)^7


Core 1: Given that y = x^4 + x^2+3. Find dy/dx


How would you differentiate f(x) = 2x(3x - 1)^2 using the chain rule?


Given y=rootx + 4/rootx = 4, find the value of dy/dx when x=8, writing your answer in the form aroot2, where a is a rational number.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning