Find the integral of (2(3x+2))/(3x^2+4x+9).

Start by expanding out the bracket on the top of the fraction to get (6x+4)/(3x2+4x+9). Then using the trick of identifying that the fraction is in the form [g(x)]/[f(x)] where f’(x)=g(x), the solution is ln(f(x)). Hence in this case would be ln(3x2+4x+9). To confirm a student understands why this is the case I would then get them to differentiate ln(3x2+4x+9) to see how this method works.

EN
Answered by Elise N. Maths tutor

3216 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The point A lies on the curve with equation y=x^0.5. The tangent to this curve at A is parallel to the line 3y-2x=1 . Find an equation of this tangent at A. [5 marks]


A curve is described by the equation x^3 - 4y^2 = 12xy. a) Find the points on the curve where x = -8. b) Find the gradient at these points.


A circle has the equation x^2 + y^2 - 4x + 10y - 115 = 0. Express the equation in the form (x - a)^2 + (y - b)^2 = k, and find the centre and radius of the circle.


How do I integrate 4x*exp(x^2 - 1) with respect to x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning