Find the integral of (2(3x+2))/(3x^2+4x+9).

Start by expanding out the bracket on the top of the fraction to get (6x+4)/(3x2+4x+9). Then using the trick of identifying that the fraction is in the form [g(x)]/[f(x)] where f’(x)=g(x), the solution is ln(f(x)). Hence in this case would be ln(3x2+4x+9). To confirm a student understands why this is the case I would then get them to differentiate ln(3x2+4x+9) to see how this method works.

Answered by Elise N. Maths tutor

2717 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is integration?


How would you derive y = function of x; for example: y = 3x^3 + x^2 + x


Find the area encompassed by y=(3-x)x^2 and y=x(4-x) between x=0 and x=2.


Solve the simultaneous equations: (1) y – 2x – 4 = 0 , (2) 4x^2 + y^2 + 20x = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences