Find the integral of (2(3x+2))/(3x^2+4x+9).

Start by expanding out the bracket on the top of the fraction to get (6x+4)/(3x2+4x+9). Then using the trick of identifying that the fraction is in the form [g(x)]/[f(x)] where f’(x)=g(x), the solution is ln(f(x)). Hence in this case would be ln(3x2+4x+9). To confirm a student understands why this is the case I would then get them to differentiate ln(3x2+4x+9) to see how this method works.

EN
Answered by Elise N. Maths tutor

2865 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you do integration by parts?


For the curve y = 2x^2+4x+5, find the co-ordinates of the stationary point and determine whether it is a minimum or maximum point.


Find the derivative of the following function: f(x) = x(x^3 + 2x)


Integrate xsin(x) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences